11 research outputs found

    Extension of the sun-synchronous Orbit

    Get PDF
    Through careful consideration of the orbit perturbation force due to the oblate nature of the primary body a secular variation of the ascending node angle of a near-polar orbit can be induced without expulsion of propellant. Resultantly, the orbit perturbations can be used to maintain the orbit plane in, for example, a near-perpendicular (or at any other angle) alignment to the Sun-line throughout the full year of the primary body; such orbits are normally termed Sun-synchronous orbits [1, 2]. Sun-synchronous orbits about the Earth are typically near-circular Low-Earth Orbits (LEOs), with an altitude of less than 1500 km. It is normal to design a LEO such that the orbit period is synchronised with the rotation of the Earth‟s surface over a given period, such that a repeating ground-track is established. A repeating ground-track, together with the near-constant illumination conditions of the ground-track when observed from a Sun-synchronous orbit, enables repeat observations of a target over an extended period under similar illumination conditions [1, 2]. For this reason, Sun-synchronous orbits are extensively used by Earth Observation (EO) platforms, including currently the Environmental Satellite (ENVISAT), the second European Remote Sensing satellite (ERS-2) and many more. By definition, a given Sun-synchronous orbit is a finite resource similar to a geostationary orbit. A typical characterising parameter of a Sun-synchronous orbit is the Mean Local Solar Time (MLST) at descending node, with a value of 1030 hours typical. Note that ERS-1 and ERS-2 used a MLST at descending node of 1030 hours ± 5 minutes, while ENVISAT uses a 1000 hours ± 5 minutes MLST at descending node [3]. Following selection of the MLST at descending node and for a given desired repeat ground-track, the orbit period and hence the semi-major axis are fixed, thereafter assuming a circular orbit is desired it is found that only a single orbit inclination will enable a Sun-synchronous orbit [2]. As such, only a few spacecraft can populate a given repeat ground-track Sun-synchronous orbit without compromise, for example on the MLST at descending node. Indeed a notable feature of on-going studies by the ENVISAT Post launch Support Office is the desire to ensure sufficient propellant remains at end-of-mission for re-orbiting to a graveyard orbit to ensure the orbital slot is available for future missions [4]. An extension to the Sun-synchronous orbit is considered using an undefined, non-orientation constrained, low-thrust propulsion system. Initially the low-thrust propulsion system will be considered for the free selection of orbit inclination and altitude while maintaining the Sun-synchronous condition. Subsequently the maintenance of a given Sun-synchronous repeat-ground track will be considered, using the low-thrust propulsion system to enable the free selection of orbit altitude. An analytical expression will be developed to describe these extensions prior to then validating the analytical expressions within a numerical simulation of a spacecraft orbit. Finally, an analysis will be presented on transfer and injection trajectories to these orbits

    Dual-Site Transcranial Magnetic Stimulation for the Treatment of Parkinson's Disease

    Get PDF
    Abnormal oscillatory activity in the subthalamic nucleus (STN) may be relevant for motor symptoms in Parkinson's disease (PD). Apart from deep brain stimulation, transcranial magnetic stimulation (TMS) may be suitable for altering these oscillations. We speculated that TMS to different cortical areas (primary motor cortex, M1, and dorsal premotor cortex, PMd) may activate neuronal subpopulations within the STN via corticofugal neurons projecting directly to the nucleus. We hypothesized that PD symptoms can be ameliorated by a lasting decoupling of STN neurons by associative dual-site repetitive TMS (rTMS). Associative dual-site rTMS (1 Hz) directed to PMd and M1 (“ADS-rTMS”) was employed in 20 PD patients treated in a blinded, placebo-controlled cross-over design. Results: No adverse events were noted. We found no significant improvement in clinical outcome parameters (videography of MDS-UPDRS-III, finger tapping, spectral tremor power). Variation of the premotor stimulation site did not induce beneficial effects either. A single session of ADS-rTMS was tolerated well, but did not produce a clinically meaningful benefit on Parkinsonian motor symptoms. Successful treatment using TMS targeting subcortical nuclei may require an intervention over several days or more detailed physiological information about the individual brain state and stimulation-induced subcortical effects

    System design study of a VLEO satellite platform using the IRS RF helicon-based plasma thruster

    Get PDF
    To achieve a feasible lifetime of several years, most satellites are deployed in orbits higher than 400 km. Drag of residual atmosphere causes a slow orbit decay, resulting in the deorbit of the spacecraft. However, e.g. optical instruments or communication devices would significantly benefit from lower altitudes in the range of 150–250 km. A solution to achieve this could be the application of atmosphere-breathing electric propulsion (ABEP), where the residual atmosphere is used to generate continuous thrust that compensates the drag.Within the EU-funded DISCOVERER project, the Institute of Space Systems (IRS) developed an electrode-less RF Helicon-based Plasma Thruster (IPT) suitable for such applications. Ignition and preliminary discharge characterizations of the IPT have been carried out at IRS facilities, using argon, nitrogen and oxygen. To further characterize the plasma plume, a torsional pendulum has been designed to determine the (local) momentum flux in the plasma jet, as well as a three-axis magnetic B-dot probe to carry out time-varying magnetic field measurements. Various intake designs were investigated, opening the possibility to conduct studies on potential satellite platforms within the frame of the ESA-funded project RAM-CLEP.A design study for an Earth Observation and Telecommunication satellite operating at 150–250 km with an extended mission lifetime is currently being carried out. The first system assessment focused on the comparison of different spacecraft configurations (“slender body” and “flat body”) and intake designs (specular or diffuse) with regard to overall drag and ABEP performance requirements.In this contribution, the design approaches for the current thruster and the diagnostic methods are depicted. Moreover, the current status of the system assessment is presented. Upcoming experimental studies of the ABEP system e.g. within the ESA-project RAM-CLEP and additional activities planned on system assessment are outlined.<br/

    Formation Flying L-Band Aperture Synthesis Mission Concept

    No full text
    ESA's Soil Moisture and Ocean Salinity mission, SMOS, in operation since November 2009, is producing global maps of soil moisture and sea surface salinity with an average resolution of 40 km. In the context of a future L-band mission, it is necessary to address the future needs for a range of applications over land and ocean that call for much enhanced spatial resolution, down to 1-10 km. With today's knowledge, the spatial resolution of a microwave radiometer can be improved only by increasing and reshaping its aperture size. In this context, this paper presents the Formation Flying L-Band Aperture Synthesis (FFLAS) mission concept which focuses on using formation flying in combination with aperture synthesis as a potential way to improve the spatial resolution significantly. Moreover FFLAS makes full use of all lessons learnt from SMOS in-orbit experience

    ASAR WIDE SWATH MODE INTERFEROMETRY:OPTIMISATION OF THE SCAN PATTERN SYNCHRONISATION

    No full text
    The availability of single look complex ENVISAT Scan-SAR product (WSS) has opened new possibilities for in-terferometric applications requiring large scale analysis and short revisit time. However, ScanSAR interferometry requires the scan pat-tern to be synchronized between interferometric acquisi-tions, which was not a design requirement for ENVISAT ASAR. Nevertheless, a preliminary analysis showed that the amount of sufficiently synchronized ASAR WSM data was much higher than expected. This is a conse-quence of the accurate ENVISAT orbit control and the systematic acquisition plan applied over certain areas of the world. To further increase the percentage of WSM data with suf-ficient synchronization, the mission planning system has been slightly modified and WSM acquisitions are planned according to the new strategy since mid Novem-ber 2006. This paper presents the requirements for ASAR ScanSAR burst synchronization, the modifications introduced in the mission planning and the improvement in the synchroni-zation percentage
    corecore